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Introduction
Electronic structure

Figure: Electronic structure scheme - source: SAAD, Y., CHELIKOWSKY, J. R.,
SCHONTZ, S. M., Numerical Methods for Electronic Structure of Materials
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Introduction
Schrödinger Equation - Born-Oppenheimer approximation

System of N electrons described by the antisymmetric wave function

ψ (r1, r2, . . . , rN) , (1)

Stationary Schrödinger equation

Ĥψ = Eψ (2)

with Hamiltonian
Ĥ = T̂e + Vee + Ven. (3)

where

T̂e = −
N∑

i=1

∆ej

2 , Vee = 1
2

∑
i,j∈{1,...,N}

i 6=j

1
‖ri − rj‖

, (4)

Ven = −
M∑

i=1

N∑
j=1

Zi
‖Ri − rj‖

, (5)
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Introduction
Schrödinger Equation - Born-Oppenheimer approximation

We search the smallest eigenvalue E and corresponding eigenfunction ψ
(ground state).

Problem becomes intractable for larger N ("Curse of dimensionality").

Hartree-Fock method transforms (3N)D problem into system of N 3D
problems (although with an approximation).
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1. Hartree-Fock method
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Hartree-Fock method
Slater determinant

Consider a wave function in a special form:

ψ (x1, x2, . . . , xN) = 1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1 (x1) χ1 (x2) · · · · · · χ1 (xN)
χ2 (x1) χ2 (x2) · · · · · · χ2 (xN)

...
... . . . ...

...
... . . . ...

χN (x1) χN (x2) · · · · · · χN (xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(6)
where

χi (xi ) = φi (ri )σi (si ) i = 1, 2, . . . ,N (7)

Antisymmetry is guaranteed.
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Hartree-Fock method
Variational principle

Let’s minimize the energy functional
〈
ψ|Ĥ|ψ

〉
subject to ψ as Slater

determinant. We can write the Lagrangian as

L =
〈
ψ|Ĥ|ψ

〉
−
∑
i ,j
λij (〈χi |χj〉 − δij) (8)

By variation of the Lagrangian we obtain Hartree-Fock equations.
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Hartree-Fock method
HF Equations

∀k ∈ {1, . . . ,N} :−
1
2∆ek︸ ︷︷ ︸
T̂

−
M∑

i=1

Zi
‖Ri − r‖︸ ︷︷ ︸
Ven

+
N∑

i=1

∫
R3

|φi (r′)|2

‖r′ − r‖ d3r′︸ ︷︷ ︸
VH

φk (r)−

−
N∑

i=1

∫
R3

φi (r′)φk (r′)
‖r′ − r‖ d3r′ δσiσk φi (r) = λkφk (r) , (9)
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Hartree-Fock method
HF Equations - closed-shell molecules

Consider a closed shell system (system without unpaired electrons) of 2N
electrons. Each orbital is occupied by two electrons with different spins.
We can rewrite the HF equation to

∀k ∈ {1, . . . ,N} :−
1
2∆ek︸ ︷︷ ︸
T̂

−
M∑

i=1

Zi
‖Ri − r‖︸ ︷︷ ︸
Ven

+2
N∑

i=1

∫
R3

|φi (r′)|2

‖r′ − r‖ d3r′︸ ︷︷ ︸
VH

φk (r)−

−
N∑

i=1

∫
R3

φi (r′)φk (r′)
‖r′ − r‖ d3r′ φi (r) = λkφk (r) , (10)
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Hartree-Fock method
Roothaan Equation - Closed Shell systems

Representation of the Hartree–Fock equation in a non orthonormal
basis set (plane wave basis, localized orbitals):

φi (r) =
Nb∑
j=1

cjiµj (r) (11)

Choosing µj as test functions we can rewrite the system (10) as a
generalized eigenvalue problem{

F (C) C = SCΛ,
CT SC = I (12)

with coefficient matrix C ∈ RNb×N , (C)ij = cij , overlap matrix
S ∈ RNb×Nb , (S)ij =

∫
R3 µi (r)µj (r) d3r, diagonal matrix

Λ = diag (λ1, . . . , λN) and Fock matrix F ∈ RNb×Nb .
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Hartree-Fock method
Roothaan Equation F (C) C = SCΛ.

F (C) = H + J (C) + K (C) (13)

Density matrix
Z = CCT (14)

Then

(J (Z) + K (Z))ij =
Nb∑

k,l=1
(2gijkl − gilkj) (Z)lk , (15)

where
gijkl =

∫
R3

∫
R3

µi (r)µj (r)µk (r′)µl (r′)
‖r − r′‖ d3r d3r′ (16)

Martin Mrovec Inexact Restoration Method 22. 3. 2016 12 / 48



Hartree-Fock method
Roothaan Equation F (C) C = SCΛ.

Standard approach - the problem is solved by iteration of a self-consistent
field (SCF)

F (Ck−1) Ck = SCkΛ. (17)

To ensure the convergence one may use the DIIS iteration (a new
coefficient matrix is computed as a combination of previous iterations).

Alternative - an optimization approach.
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Hartree-Fock method
Optimization approach

Hartree-Fock Energy functional

E (Z) = Trace [2HZ + (J (Z) + K (Z)) Z] (18)

with gradient

∇E (Z) = 2 (H + J (Z) + K (Z)) = 2F (Z) (19)

Quadratic programming problem

minE (Z) (20)

with equality constraints:
Z = ZT , (21)

ZSZ = Z (22)

Trace (ZS) = N. (23)
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Hartree-Fock method
Optimization approach

Let’s define matrix X = S1/2ZS1/2 and function
f (X) = E

(
S−1/2XS−1/2

)
. We can rewrite our optimization problem to

min f (X) (24)

subject to
X = XT , (25)

XX = X, (26)

Trace (X) = N. (27)

Once we have obtained a solution X, we can get a coefficient matrix as:

C = S−
1
2 Q,

where columns of Q ∈ RNB×N are an orthonormal basis of the null space
of X− I.
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2. Inexact Restoration method
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Inexact Restoration method
Problem definition

Let f : Rn → R, h : Rn → Rm be differentiable and ∇f , ∇h
Lipschitz-continuous on convex and closed polytope Ω. Consider the
nonlinear optimization problem

min f (x) subj. to h (x) = 0, x ∈ Ω. (28)

Lagrangian of the problem:

L (x , λ) = f (x) + h (x)T λ. (29)(
x , λ

)
∈ Ω× Rm is a critical pair, if

h (x) = 0 (30)

and
PΩ
(
x −∇L

(
x , λ

))
− x = 0; (31)

Martin Mrovec Inexact Restoration Method 22. 3. 2016 17 / 48



Inexact Restoration method
Critical pair scheme
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Inexact Restoration method
Critical pair scheme
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Inexact Restoration method
Algorithm

Let us define :

Merit function (x ∈ Ω, θ ∈ [0, 1]):

Φ (x , θ) = θf (x) + (1− θ) ‖h (x)‖ (32)

Tangent set (y ∈ Rn):

T (y) =
{
z ∈ Ω|∇h (y)T (z − y) = 0

}
(33)
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Inexact Restoration method
Algorithm

Algorithmic parameters: r ∈ [0, 1) , β, γ, τ > 0. We assume that rk ∈ [0, r ]
for every iteration nr. k ∈ N.

0. Initialization Choose arbitrarily x0 ∈ Ω, initialize θ−1 ∈ (0, 1) and
k = 0.

1. Restoration step Compute yk ∈ Ω such that:∥∥∥h (yk
)∥∥∥ ≤ rk

∥∥∥h (xk
)∥∥∥ (34)

and ∥∥∥yk − xk
∥∥∥ ≤ β ∥∥∥h (xk

)∥∥∥ (35)

Get closer to h(x) = 0 and stay in Ω.
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Inexact Restoration method
Algorithm

2. Penalty parameter Compute θk - first element of sequence
{
θk−1

2j

}
j∈N

such that

Φ
(
yk , θ

)
≤ Φ

(
xk , θ

)
+ 1

2
(∥∥∥h (yk

)∥∥∥− ∥∥∥h (xk
)∥∥∥) (36)

3. Tangent descent direction Compute dk ∈ Rn such that yk + dk ∈ Ω,

f
(
yk + tdk

)
≤ f

(
yk
)
− γt

∥∥∥dk
∥∥∥2

(37)

for all t ∈ [0, τ ] and
∇h

(
yk
)T

dk = 0. (38)
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Inexact Restoration method
Algorithm

4. Acceptance of the step Compute tk as the first element t of the
sequence

{
1
2j

}
j∈N0

such that

Φ
(
yk + tdk , θk

)
≤ Φ

(
xk , θk

)
+ 1− r

2
(∥∥∥h (yk

)∥∥∥− ∥∥∥h (xk
)∥∥∥) (39)

and
f
(
yk + tkdk

)
≤ f

(
yk
)
− γtk

∥∥∥dk
∥∥∥2

(40)

Set xk+1 = yk + tkdk , k ← k + 1 and go to 1.
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Inexact Restoration method
Implementation

Restoration step
How to get closer to h (x) = 0? For example

yk = xk − β
∇
∥∥∥h (xk

)∥∥∥
‖∇‖h (xk)‖‖ = xk − β

∇h
(
xk
)T

h
(
xk
)

∥∥∥∇h (xk)T h (xk)
∥∥∥ (41)

Tangent descent direction
Optimal direction in the tangent set T

(
yk
)
?

Solution: Approximately minimize the lagrangian L
(
yk + d , λk

)
.

Alternative: Let V be a matrix, which columns form an orthogonal
basis of ker

(
−∇h

(
yk
))

. Then the direction of the local steepest
descent in the tangent set is

dk = VV T∇f
(
yk
)

(42)

(projection of -gradient of f onto tangent set).
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Inexact Restoration method
Matlab example

Example
f (x) = (x1 − 1/2)2 +(x2 − 1/2)2 , h(x) = x2−x1−1/2, Ω = 〈0, 1〉×〈0, 1〉

Martin Mrovec Inexact Restoration Method 22. 3. 2016 25 / 48



Inexact Restoration method
Matlab example

Example
f (x) = (x1 − 3/4)2 +(x2 − 3/4)2 , h(x) = x2−x1−1/2, Ω = 〈0, 1〉×〈0, 1〉
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Inexact Restoration method
Matlab example

Example
f (x) = x1, h(x) = (x1 − 1/2)2 + (x2 − 1/2)2 − 1/10, Ω = 〈0, 1〉 × 〈0, 1〉
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Inexact Restoration method
Matlab example

Example

f (x) = 100
(

(2x1 − 1)3 − (2x2 − 1)2
)2

+ (1− (2x1 − 1))2, h(x) =
(x1 − 1/2)2 + (x2 − 1/2)2 − 1/10, Ω = 〈0, 1〉 × 〈0, 1〉
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Inexact Restoration method - matrix problem
Problem definition

Let f : RK×K → R; K ,N ∈ N, N < K . Assume that f has continuous first
derivatives for all X ∈ RK×K . The optimization problem can be written as

min f (X) subj. to X ∈ G (43)

where

G =
{

X ∈ RK×K | X = XT , X2 = X, Trace (X) = N
}

(44)

(known as Grassmann manifold)

Number of equality constraints exceeds the number of variables! (It is
necessary to show (using special techniques), that the minimizer satisfies
KKT conditions).
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Inexact Restoration method - matrix problem
Problem definition

We define similarly to general algorithm (minimization with equality
constraint, convex set, lagrangian):

Convex set

Ω =
{

X ∈ RK×K |X = XT ,Trace (X) = N
}

(45)

Lagrangian

L (X,Λ) = f (X) +
〈
X2 − X,Λ

〉
, Λ ∈ RK×K , (46)

with gradient

∇XL (X,Λ) = ∇f (X) + XΛ + ΛX− Λ. (47)

Critical pair
(
X,Λ

)
satisfies

X2 − X = O, PΩ
(
X−∇XL

(
X,Λ

))
− X = O (48)
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Inexact Restoration method - matrix problem
Algorithm

Algorithmic parameters: γ ∈ (0, 1/4) , τ, µ > 0.

0. Initialization Choose an initial symmetric matrix X0 ∈ RNb×Nb such
that Trace (X0) = N, initialize θ−1 ∈ (0, 1) and k = 0.

1. Restoration step Compute Yk ∈ G as a solution of:

min ‖Xk − Y‖F subj. to Y ∈ G (49)

Projection to the feasible set."Exact restoration".
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Inexact Restoration method - matrix problem
Algorithm

2. Penalty parameter Compute θk - first element of sequence
{
θk−1

2j

}
j∈N

such that

θf (Yk) ≤ θf (Xk) +
(
1− θ − 1

2

)∥∥∥X2
k − Xk

∥∥∥
F

(50)

3. Tangent descent direction Compute Ek ∈ S (Yk) such that

f (Yk + tEk) ≤ f (Yk)− γt ‖Ek‖2F (51)

for all t ∈ [0, τ ] and

‖Ek‖F ≥ µ
∥∥∥PS(Yk ) [∇f (Yk)]

∥∥∥
F
. (52)
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Inexact Restoration method - matrix problem
Algorithm

4. Acceptance of the step Compute tk as the first element t of the
sequence

{
1
2j

}
j∈N0

such that

θk f (Yk + tEk) + (1− θk)
∥∥∥(Yk + tEk)2 − (Yk + tEk)

∥∥∥
F
≤

≤ θk f (Xk) +
(
1− θk −

1
2

)∥∥∥X2
k − Xk

∥∥∥
F

(53)

and
f (Yk + tkEk) ≤ f (Yk)− γtk ‖Ek‖2F (54)

Set Xk+1 = Yk + tkEk , k ← k + 1 and go to 1.
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Inexact Restoration method - matrix problem
Properties of G

Let X ∈ G. Then it can be written as

X = CCT , (55)

where C ∈ RK×N has orthonormal columns which form a basis of the
N-dimensional subsp. R (X). Therefore, X has N eigenvalues equal to 1
and K − N eigenvalues equal to 0.
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Inexact Restoration method - matrix problem
Tangent set characterization

Denote S (Y) parallel subspace to the subset T (Y).

Theorem
Assume that Y ∈ G. Then

S (Y) =
{

E ∈ RK×K | E = ET , YE + EY− E = 0
}

(56)

and

T (Y) =
{

Z ∈ RK×K | Z = ZT , Y (Z− Y) + (Z− Y) Y− (Z− Y) = 0
}
.

(57)
The dimension of S (Y) is N (K − N)

Martin Mrovec Inexact Restoration Method 22. 3. 2016 35 / 48



Inexact Restoration method - matrix problem
Projection onto tangent set

How to find a projection of symmetric matrix A onto S (Y)?

Theorem
Assume that Y ∈ G. Let A ∈ RK×K be a symmetric matrix. The the
Frobenius projection of A onto S (Y), respectively T (Y) is given by

PS(Y) (A) = YA + AY− 2YAY, (58)

resp.

PT (Y) (A) = Y + Y (A− Y) + (A− Y) Y− 2Y (A− Y) Y. (59)
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Inexact Restoration method - matrix problem
Properties of G

Lemma
Let Y ∈ G and B ∈ T (Y) (K ≥ 2N). Then the eigenvalues of B are given
by −εN ,−εN−1, . . . ,−ε1, 0, . . . , 0︸ ︷︷ ︸

K−2N

, 1 + ε1, 1 + ε2, . . . , 1 + εN

 , (60)

where εi ≥ 0 for all i = 1, . . . ,N.
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Inexact Restoration method - matrix problem
Restoration phase

In the restoration phase we want to find the Frobenius projection of Xk
onto G, which can be written as

Yk = argmin ‖Xk − Y‖F where Y ∈ G. (61)
To find it we can use the following theorem

Theorem
Let Z ∈ RK×K be symmetric. The spectral decomposition of the matrix Z
is Z = QDQT , where diagonal elements of the matrix D are in
non-increasing order. Define

S = diag(1, . . . , 1︸ ︷︷ ︸
N

, 0, . . . , 0︸ ︷︷ ︸
K−N

). (62)

Then QSQT is a solution of

argmin ‖Z− Y‖F where Y ∈ G. (63)

.
Martin Mrovec Inexact Restoration Method 22. 3. 2016 38 / 48



Inexact Restoration method - matrix problem
Restoration phase without diagonalization

Restoration phase require expensive diagonalization of matrix Xk . But this
computation can be replaced by an iterative process

Yj+1
k = Yj

k −
(
2Yj

k − I
)−1

[(
Yj

k

)2
− Yj

k

]
. (64)

(It is application of Newton method to each eigenvalue of the matrix
Yj

k = QDj
kQT for solving the equation d2

i − di = 0). For di ∈ {0, 1} ∀i
following equation holds:(

2Yj
k − I

)−1
=
(
2Yj

k − I
)
. (65)

We have obtained a new iteration process

Yj+1
k = 3

(
Yj

k

)2
− 2

(
Yj

k

)3
. (66)

"Purification step".
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Inexact Restoration method - matrix problem
Tangent descent direction

How to find an optimal direction in the tangent set?
Consider the subproblem

argminQk (E) subj. to E ∈ S (Yk) (67)

where Qk (E) = L (Yk + E,Λk). Suppose we have an approximation of
Lagrange multiplier matrix Λk . We can use Conjugate gradient approach
to minimize Qk (E). Instead of the gradient direction we use the projection
of the gradient to the tangent set. After finding the minimum we have to
test the condition〈

Ek ,PS(Yk ) [∇f (Yk)]
〉
≤ −10−6 ‖Ek‖F

∥∥∥PS(Yk ) [∇f (Yk)]
∥∥∥

F
(68)

If not fulfilled, we choose Ek = PS(Yk ) [−∇f (Yk)].
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Inexact Restoration method - matrix problem
Tangent descent direction

Consider the Lagrangian

L (X,Λ) = f (X) +
K∑

i ,j=1
λij
(
X2 − X

)
ij

(69)

Lagrange multiplier matrix Λ ∈ RK×K can be approximated as

Λk = −1
2
(

(2Yk − I)∇f (Yk) + [(2Yk − I)∇f (Yk)]T
)

(70)
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Inexact Restoration method - matrix problem
Matlab experiments - example

Example
f (X) = Trace (TX) ,∇f (X) = T

T = Diag(−1, . . . ,−1︸ ︷︷ ︸
N

, 0, . . . , 0︸ ︷︷ ︸
K−N

)

Solution:
X∗ = Diag(1, . . . , 1︸ ︷︷ ︸

N

, 0, . . . , 0︸ ︷︷ ︸
K−N

)

.
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Inexact Restoration method - matrix problem
Matlab experiments - solution

(a) Accurate solution (b) Solution by IRM

Figure: K = 20 (matrix size 20× 20), N = 7

‖X∗ − X‖ = 0.5346, f (X∗) = −7.0000, f (X) = −6.8571, 214 iterations.
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Inexact Restoration method - matrix problem
Matlab experiments - example

Example
f (X) = Trace (TX) ,∇f (X) = T

T =



2 −1 0
−1 2 . . .

. . . . . . . . .
. . . . . . −1

0 −1 2


Solution: Projection matrix onto the subspace generated by the N smallest
eigenvalues of the matrix T.
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Inexact Restoration method - matrix problem
Matlab experiments - solution

(a) Accurate solution (b) Solution by IRM

Figure: K = 100 (matrix size 100× 100), N = 2

‖X∗ − X‖ = 0.1701, f (X∗) = 0.0048, f (X) = 0.0050, 3 iterations.
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Inexact Restoration method - matrix problem
Matlab experiments - solution

(a) Accurate solution (b) Solution by IRM

Figure: K = 100 (matrix size 100× 100), N = 40

‖X∗ − X‖ = 0.1701, f (X∗) = 19.7845, f (X) = 19.7844, 4 iterations.
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Thank you for attention
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